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In Refs. [1,2], an effective implicit time integration scheme was proposed for the finite element solution of
nonlinear problems in structural dynamics. Various important attributes were demonstrated. In particu-
lar, it was shown that the scheme remains stable, without the use of adjustable parameters, when the
commonly used trapezoidal rule results in unstable solutions. In this paper we focus on additional impor-
tant attributes of the scheme, and specifically on showing that the procedure can also be effective in lin-
ear analyses. We give, in comparison to other methods, the spectral radius, period elongation, and
amplitude decay of the scheme and study the solution of a simple ‘model problem’ with a very flexible
and stiff response.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

A large amount of research has been performed to identify
effective time integration schemes for the linear and nonlinear
analyses of structures, see for example Refs. [1–9], and the many
references therein. For explicit time integration, commonly, the
central difference method is used. For implicit time integration, a
number of methods have been proposed and of these, the trapezoi-
dal rule and the alpha methods are now most commonly employed
[6,8].

Considering linear analysis, as is well known, the trapezoidal
rule is unconditionally stable, second-order accurate, and regard-
ing time integration errors, shows no amplitude decay and accept-
able period elongation [6]. However, in nonlinear analyses the
method may become unstable, in which case the conditions of
momentum and energy conservation are clearly not satisfied. For
this reason, research has been focused on establishing more effec-
tive time integration schemes for cases in which the trapezoidal
rule fails.

One approach is to introduce some damping into a time integra-
tion method through the use of adjustable parameters, and this ap-
proach has been used in the design of the alpha-methods [8]. The
undesirable property is then that the parameters have to be se-
lected and acceptable values depend on the characteristics of the
problem solved. If the parameters are set inappropriately, large
solution errors may result.
ll rights reserved.
Recently, we proposed an implicit time integration scheme that
does not involve the setting of any parameters but merely the
selection of an appropriate time step size – as is always required
in any implicit time integration solution [1,2,6]. The method com-
bines the use of the trapezoidal rule and an Euler backward meth-
od, techniques that have been long time available, see for example
Ref. [10]. This combination was proposed for first-order systems by
Bank et al. [11], but it took an additional two decades before the
method was ‘‘discovered’’ and demonstrated to be effective for
the solution of the second-order systems of structural dynamics
in finite element solutions [1,2]. Of course, the finite element equa-
tions display specific properties and the scheme had to be shown
to be reliable and effective for such analyses. The reliability of
the integration scheme is particularly important in critical large
deformation solutions, see e.g. [6,12–14].

Since the publication of the time integration scheme for finite
element solutions involving nonlinear large deformations, much
additional experience has been gained. As may be expected, the
scheme is now widely used for some nonlinear analyses, specifi-
cally also in contact solutions, but – as may not be expected –
the method can also be effective in linear analyses.

The objective of this paper is to present a study of the method in
linear analysis and compare its performance with the trapezoidal
rule and two additional members of the Newmark family of meth-
ods that may be considered for solution. In the following, we
briefly review the basic equations used in Ref. [2], present some
basic properties of the time integration method, and then apply
the scheme, and the other methods, in the solution of a simple lin-
ear ‘model problem’ to study and illustrate some important and
valuable properties of the method.

http://dx.doi.org/10.1016/j.compstruc.2012.01.009
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2. The time integration scheme

In this section we briefly present the basic equations used in the
time integration scheme of Ref. [2] and the stability and accuracy
properties.
2.1. The basic equations of time integration

The basic equations used in the time integration scheme have
been known for a long time, see e.g. Ref. [10]. In the method of
Ref. [2], the complete time step Dt is subdivided into two equal
sub-steps. For the first sub-step the trapezoidal rule is used and
for the second sub-step the 3-point Euler backward method is em-
ployed with the resulting equations

tþDt=2 _U ¼ t _U þ Dt
4
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Considering linear analysis, the structural dynamics equations ap-
plied at time t + Dt/2 and t + Dt are

M tþDt=2 €U þ C tþDt=2 _U þ K tþDt=2U ¼ tþDt=2R ð5Þ
M tþDt €U þ C tþDt _U þ K tþDtU ¼ tþDtR ð6Þ

where K, M, C are the stiffness, mass and damping matrices, U
denotes the nodal displacements and rotations, and an overdot
A¼ 1
b1b2
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denotes a time derivative. Using Eqs. (1)–(6), the time-stepping
equations become

bK 1
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With the initial conditions corresponding to time 0.0 known, Eqs.
(7) and (8) are used successively for each time step to solve for
the required solution, over the complete time domain considered.

Of course, this solution requires the selection of a time step Dt,
the factorization of the ‘‘effective stiffness matrices’’ defined in Eqs.
(9) and (10) prior to the time integration, and the calculation of the
effective load vectors and forward-reductions and back-substitu-
tions for each time step [6]. For an effective solution, clearly as large
a time step as possible need to be chosen, and this time step size de-
pends on the accuracy properties of the time integration scheme.

Here we should note that in nonlinear analysis, the use of the
different effective stiffness matrices when the trapezoidal rule
and the Euler backward method are applied does not increase
the solution effort because, in any case, Newton–Raphson itera-
tions are used with new tangent stiffness matrices in each itera-
tion. However, in linear analysis, it may be advantageous to use
the same effective stiffness matrix in Eqs. (7) and (8) and this is
achieved by using instead of 1/2Dt, the value ð2�

ffiffiffi
2
p
ÞDt in split-

ting the full time step Dt, see Ref. [1]. Hence, in that case, the equi-
librium equations are used at time t þ ð2�

ffiffiffi
2
p
ÞDt instead of Eq. (5).

Of course, then only one factorization of an effective stiffness ma-
trix is required and also, if the matrix can be kept in-core, less
memory is needed.
2.2. The stability and accuracy properties

The method is unconditionally stable, hence the time step to be
used in the time integration can be chosen with respect to accuracy
considerations only.

A stability analysis can be performed as given for other schemes
in Refs. [4–6]. This analysis uses the equation
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where A, La, and Lb are the integration approximation and load
operators, respectively,
La ¼
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b1 ¼ 16þ 8nxDt þx2Dt2 ð17Þ
b2 ¼ 9þ 6nxDt þx2Dt2 ð18Þ

and x and n are the free vibration natural frequency and the damp-
ing ratio, respectively.

Of crucial importance is the behavior of the spectral radius q(A)
as a function of Dt/T, where T = 2p/x. We give this radius in Fig. 1,
and compare it with the radius of the trapezoidal rule, two New-
mark schemes, and the Wilson theta and Houbolt methods [6]
(although these last two methods are hardly used anymore be-
cause the solution errors of period elongation and amplitude decay
are in general too large [6]). In the figure, we refer to the method of
Refs. [1,2] as the ‘Bathe method’.

In the Newmark schemes the equations used are [6]



Fig. 1. Spectral radii of approximation operators, case n = 0.0, for various methods. Fig. 3. Percentage amplitude decays for various methods.
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tþDt _U ¼ t _U þ ½ð1� dÞt €U þ d tþDt €U�Dt ð19Þ
tþDtU ¼ tU þ t _UDt þ 1
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where the parameters a and d employed are given in Fig. 1.
The important point to notice is that in the scheme of Ref. [2]

until Dt/T is equal to about 0.1 the value of q(A) is 1.0 and there-
after it rapidly diminishes. This is a very desirable property be-
cause it ensures unconditional stability and, in addition, relates
to high accuracy until Dt/T is 0.1, with thereafter numerical damp-
ing and strong numerical damping in the response for which Dt/T
is larger than about 0.3. We note that the use of 2�

ffiffiffi
2
p

instead of
1/2 for the splitting of the time step gives practically the same
graph of q(A).

Figs. 2 and 3 summarize the period elongations and amplitude
decays. These results show the accuracy properties of the scheme.
The trapezoidal rule has no amplitude decay and an acceptable
period elongation. The Bathe method shows a very small ampli-
tude decay and period elongation for reasonable time step values,
and when using Dt/T = 0.1, that is, 10 time steps per period are
used, about 14 time steps of the trapezoidal rule result in the same
solution error of period elongation. This is an increase of about 40%
in solution time using the Bathe method, but the desirable solution
quality discussed in Section 3 is obtained.
Fig. 2. Percentage period elongations for various methods.
Of course, the numerical damping shown in Fig. 3 results into
the desired stability in nonlinear solutions [1,2]. We will demon-
strate the importance of this damping property in linear analysis
in Section 3.

3. A demonstrative solution

Our objective in this section is to present the solution of a sim-
ple linear system. The calculated solution yields valuable insight
into the properties of the scheme.

We consider the solution of the 3 degree-of-freedom spring sys-
tem shown in Fig. 4 for which the governing equations are
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0 0 m3
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For our study we use k1 = 107, k2 = 1, m1 = 0, m2 = 1, m3 = 1 and we
prescribe the displacement at node 1 to be

u1 ¼ sin xpt ð22Þ

with xp = 1.2.
Since node 1 is subjected to the prescribed displacement over

time, given in Fig. 4, we rewrite Eq. (21) to solve only for the un-
known displacements u2 and u3

m2 0
0 m3

� �
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þ
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�k2 k2
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after which the reaction is obtained as

R1 ¼ m1€u1 þ k1u1 � k1u2 ð24Þ

The important point to note is that we use this simple problem as a
‘model problem’ to represent the stiff and flexible parts of a much more
Fig. 4. Model problem of three degrees of freedom spring system, k1 = 107, k2 = 1,
m1 = 0, m2 = 1, m3 = 1, xp = 1.2.



Fig. 7. Velocity of node 2 for various methods (the static correction gives the
nonzero velocity at time = 0.0).

Fig. 6. Displacement of node 3 for various methods.
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complex structural system. The left high stiffness spring in the model
problem is used to represent, for example, almost rigid connections
or penalty factors used, while the right flexible spring represents
the flexible parts of the complex structural model. The almost rigid
(of small flexibility) parts (for example modeled using artificially
stiff truss or beam elements) are in the complex model to serve
an important purpose but the detailed response within these parts
is not to be included in the overall system response. Indeed, the
high stiffness values used in practice have frequently little physical
meaning other than to provide constraints.

In a mode superposition solution, the response within these stiff
parts – a response that corresponds to very high artificial frequen-
cies – would naturally not be included.

While in our model problem, of course, the stiff spring could be
made infinitely stiff reducing the system to only two degrees of
freedom, in practice, we frequently encounter complex finite ele-
ment models that contain, in essence, such stiff elements in many
varied parts of the model and these stiff parts may not be reduc-
ible. In fact, we use the system in Fig. 4 as a ‘model system’ of such
complex structural systems of many thousands of degrees of free-
dom and want to study the behavior of the numerical solution
when obtained by the direct integration schemes.

We consider the spring system using zero initial conditions for
the displacements and velocities at nodes 2 and 3 (as must typi-
cally be done in a complex many degrees of freedom structural
analysis), and solve for the response over 10 s. For the solution
we use the time stepping schemes for Eq. (23) and also calculate
the reaction in Eq. (24). The time step used is Dt = 0.2618; hence
we have Dt/Tp = 0.05, Dt/T1 = 0.0417 and Dt/T2 = 131.76, where
T1 = 6.283, T2 = 0.002 are the natural periods of the system in Eq.
(23) and Tp = 5.236 is the period of the prescribed motion at node
1 (some values are rounded).

Figs. 5–13 give the calculated solutions. In these figures we also
give the response obtained in a mode superposition solution, re-
ferred to as ‘reference solution’ using only the lowest frequency
mode plus the static correction [6] (to do what would typically
be done in a practical analysis of a large degree of freedom model).

The figures show that all the time stepping schemes, except the
Bathe method, do not perform well, in particular the acceleration
at node 2 and the reaction are very poorly predicted. In fact, the
trapezoidal rule displays large errors and ‘practically’ an instability
in the calculation of the reaction, see Fig. 12. On the other hand, the
Bathe method performs very well – without the adjustment of any
parameter. There is only for the first time step an ‘undershoot’ in
Figs. 10 and 13 (which can also be proven analytically to only occur
Fig. 5. Displacement of node 2 for various methods. Fig. 8. Velocity of node 3 for various methods.



Fig. 9. Acceleration of node 2 for various methods.

Fig. 10. Acceleration of node 2 for various methods.

Fig. 11. Acceleration of node 3 for various methods.

Fig. 12. Reaction force at node 1 for various methods.

Fig. 13. Reaction force at node 1 for various methods.
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in the first step). The important observation is that the method per-
forms like a mode superposition solution: it calculates the required re-
sponse accurately and does not include (in essence, discards) the
dynamic response in the high frequency mode that is artificial due to
modeling. This fact is very important in practical analyses, and of
course holds in linear as well as in nonlinear solutions.

We should note that in this solution m1 = 0. If a nonzero mass is
prescribed at the support, the numerical solutions look qualita-
tively similar.

It is the appropriate numerical damping using the Bathe meth-
od that gives a good solution for the velocity and acceleration of
node 2, and for the reaction. Of course, numerical damping can
be introduced by the use of many methods, for example using
the Houbolt and Wilson methods [6], the backward Euler method
(Eqs. (3) and (4) applied once or twice per time step), or the New-
mark method with specific parameters. Figs. 7, 10 and 13 show
that when using the Newmark method with a = 3/10 and d = 11/
20 the response is damped and reasonable accuracy is obtained
after some solution time. However, the percentage period elonga-
tions and amplitude decays of these methods are quite large for
reasonable time step ratios.

While we considered here a simple model problem to focus on
the essence of the phenomenon studied, the same observations are
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made when solving large finite element models in practical engi-
neering and the sciences.

4. Concluding remarks

The objective of this paper was to give some insight into the use
of an implicit time integration scheme for the transient response
solution of structural, i.e. finite element, systems. While the meth-
od proposed in Refs. [1,2] was therein shown to be effective for cer-
tain nonlinear analyses, we focused in this paper on the linear
analysis of structural systems (but the conclusions reached are also
valid in nonlinear analysis).

In practice, finite element systems frequently contain very flex-
ible and quite stiff parts (that indeed may only model constraints).
In the direct time integration solution, an appropriate time step is
chosen and then the solution is marched out for all coupled degrees
of freedom over the complete time domain considered.

In this paper we studied characteristics and the performance of
the method given in Refs. [1,2] referred to herein as the ‘Bathe
method’. In particular, we considered a simple two degree of free-
dom ‘model problem’ to represent the essence of such complex
flexible/ stiff systems and to study the response calculated using
the trapezoidal rule, two other direct time integration schemes
from the Newmark family of methods, and the Bathe method.

This method shows very desirable solution characteristics in
that the artificial high frequency response is damped out and not
included as errors in the solution. In essence, the response was ob-
tained like in a mode superposition analysis: only the physical
mode that is excited is accurately included in the response to-
gether with the static correction.

The other methods used, and in particular the trapezoidal rule,
did not perform well. In one of the Newmark schemes used, also
numerical damping is included but the solution errors are large.
While we deliberately did not include in our study time integra-
tion techniques for which numerical parameters need to be chosen
– like, for example, the alpha-method [8] – there may of course be
other time integration procedures that warrant a study of the kind
we have given here. For such study, the simple ‘model problem’
considered in this paper should be of value.
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